Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease
نویسندگان
چکیده
Friedreich's ataxia (FRDA), the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin deficiency-induced phenotypes. Taken together, these results demonstrate that the metal dysregulation in FRDA includes other metals besides iron, therefore providing a new set of potential therapeutic targets.
منابع مشابه
Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich’s Ataxia
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a...
متن کاملFrataxin expression rescues mitochondrial dysfunctions in FRDA cells.
Friedreich's ataxia (FRDA) is the result of mutations in the nuclear-encoded frataxin gene, which is expressed in mitochondria. Several lines of evidence have suggested that frataxin is involved in mitochondrial iron homeostasis. We have transfected the frataxin gene into lymphoblasts of FRDA compound heterozygotes (FRDA-CH) with deficient frataxin expression to produce FRDA-CH-t cells in which...
متن کاملRNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila.
The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe-S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the u...
متن کاملLoss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by mutations in Frataxin (FXN). Loss of FXN causes impaired mitochondrial function and iron homeostasis. An elevated production of reactive oxygen species (ROS) was previously proposed to contribute to the pathogenesis of FRDA. We recently showed that loss of frataxin homolog (fh), a Drosophila homolog of FXN,...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کامل